
ARTICLES

DSS DESIGN: A SYSTEMIC VIEW
OF DECISION SUPPORT

A systemic view of DSS can provide a concrete framework for effective
design of DSS and can also serve as a basis for accumulating DSS research
results.

GAD ARIAV and MICHAEL J. GINZBERG

DSS studies have typically focused on a single set of
related issues. Whiie some studies have dealt exten-
sively with the nature of decision situations and with
the type of services provided by a DSS [14, 221, others
have examined components, tools, and technologies
that are needed to provide decision support services [7],
and still another group has emphasized the processes of
DSS design, implementation, and use [17, 241. Yet,
there has been no effective integration of these diverse
elements to date, and this lack of a unified approach to
the subject has hampered efforts to develop a solid
basis for DSS design. Research focusing solely on com-
ponents or resources can offer only limited help in the
design of DSS. Recent books on DSS design [4, 6, 271
have proposed a basic set of DSS components, but do
not make explicit the necessary contingent relation-
ships between the structural aspect of a system and the
services it is expected to provide or the characteristics
of the environment in which it will operate.

The premise of the systemic view of DSS is that in
order to understand these systems the following five
aspects must be considered simultaneously: environ-
ment, role, components, arrangement of components,
and the resources required to support the system [g]. A
meaningful DSS design must explicitly link these five
aspects so that characteristics of the system’s environ-
0 1985 ACM OOOl-07t32/85/1000-1045 750

ment and role will be reflected in its components and
their arrangement.

As the name DSS implies, the objects we are discuss-
ing are indeed systems, and yet this perspective has
been lost in much of the DSS literature. The purpose of
this article is to present a comprehensive view of DSS
using the systemic framework as an organizing concept.
No new terminology will be introduced. Instead, we
will use the concepts of systems theory to integrate the
disparate perspectives in the DSS literature into a con-
sistent and coherent body of knowledge. This inte-
grated view will then help to provide new insights for
DSS design, research, and curricula.

THE ASPECTS OF A SYSTEM
The fundamental premise of systems theory or the sys-
tems approach is that systems, regardless of their spe-
cific context, share a common set of elements [g].
Briefly, the system elements are the following:

l The environment is the set of entities and conditions
outside of the system boundary that affects the sys-
tem or is affected by it. The entities in the environ-
ment may be affected by the system, but are not
control!ed by it.

l The role, function, or objective of a system represents
its intended impact on its environment. It specifies

October 1985 Volume 28 Number 10 Communications of the ACM 1045

Articles

which services the system is supposed to deliver and
what its goals are. It als,o provides the basis for evalu-
ating the system and thus should be specified in
terms that are amenable to measurement.

l The compclnents of the system are the identifiable ele-
ments within the system boundary. Typically these
components represent the functional building blocks
of the system. Two common bases for component def-
inition are division of labor and specialization by
environmental segment. The former relates to the
ability to perform effectively a particular, necessary
task, while the latter relates to the ability to interface
with a particular aspect of the environment.

l Arrangemerzt concerns the links among the system
components and between them and the environmen-
tal elements. The fundamental concern in arranging
components is the balance between coordination and
autonomy [lo]. Generally it is preferable to have the
minimum of interdependence among components,
which still allows the system as a whole to serve its
function. The two key dimensions of arrangement
are the configuration or layout of the links among
componems. and the nature of these links.

l System resources are the elements that are used or
consumed in building and operating the system. Like
the environment, resources exist outside the system
boundary. Resources are differentiated from the en-
virotiment in that they are partially controllable-if
not in total quantity available, at least in the mix that
will be used. Resources may include people, raw ma-
terials, capital, tools and techniques, etc.

Systems thought emphasizes the need to take a holis-
tic view in order to explain why an object is structured
as it is, or how it should be structured. Thus, the sys-
tem study starts from the outside, identifying the envi-
ronment in which the object exists and the way it
impacts that environment-that is, its role. Only after
these external1 aspects of the system have been studied
does it make sense to consider the components and
their arrangement.

An intelligent selection of resources cannot be made
until the other four system aspects have been consid-
ered. Resources are differentiated from system compo-
nents and should be discussed last to ensure that the
functional composition of the system is not unduly
biased by the perceived availability of resources. Design
should proceed from an “ideal” system to a critical re-
view of resource availability, and then to a feasible
system [I].

Let us now examine the five system aspects in the
DSS context.

DSS ENVIRONMENT
The description of a DSS environment should be design
relevant: it sh[ould highlight only those environmental
features that have, or should have, an impact on the
system structure. There seem to be at least two impor-
tant dimensions to a DSS environment-task character-
istics and aco3ss pattern.

1046 Commutlicatiorl:; of the ACM

Task Characteristics
Task characteristics have been discussed frequently in
the DSS literature, but a somewhat broader range of
task aspects is needed.

The task characteristic most frequently associated
with DSS is the degree to which the decision maker can
apply predefined rules and procedures-that is, task
structurability [‘12]. Gorry and Scott-Morton [14] used
task structure as a key concept for defining the appro-
priate environment for DSS. More recent work has sug-
gested that there is no inherent structure to the task
itself, only structure as perceived by individuals [24].
Therefore, instead of task structure, the characteristic
of interest should be task structurability, the possibility
of bringing structure to bear on a task, which is depen-
dent upon both the individual performing the task and
the task itself.

A second key task characteristic is its level--that is,
operational control. management control, or strategic
planning [3]. This characteristic has also been discussed
in much of the “classic” DSS literature [la], and the
suggestion has often been made that DSS might be ap-
propriate only at higher levels. More recent DSS litera-
ture claims that DSS may be appropriate at any level
[ll, 13, 271.

The third characteristic is the decision-process
phase-intelligence, design, or choice [26]. Most DSS
have been used at the solution-selection and choice
phase, or, to a lesser extent, the intelligence and
problem-definition phase of the decision-making pro-
cess. DSS, however, are also applicable to the design
and alternative-generation phase, and the pattern of
use to date mainly reflects the difficulty of designing
systems to support this phase.

The fourth is the functional area of the application-
for example, finance, marketing, and production. The
differences in the demands and constraints that dif-
ferent functional areas place on a DSS may be as sig-
nificant as those resulting from any of the other task
dimensions.

Access Pattern
The access pattern encompasses three major concerns
in DSS design. The first of these is the mode of user
interaction. The early DSS literature assumed that use
would always be highly interactive; that the decision
maker would interact with the DSS as a decision was
being made [14]. Although some DSS are used in this
manner, it has become clear that at least as many oth-
ers are not [12, 161. User interaction with a DSS can
range from true on-line dialogue to intermittent batch
use.

The access pattern also captures the salient “dimen-
sions” of the user community, including the number of
people who use the system, their expertise in compute]
usage or the problem area, and their role in the deci-
sion process. One dimension of the user community,
which has been discussed in the literature but which
we do not include at this time, is cognitive style. We
agree with Huber’s assessment [15] that not enough is

October 1985 Volume 28 Number 10

Articles

known about the impact of cognitive style to make
design-relevant prescriptions.

Finally there is the relationship to “neighboring” in-
formation systems. A DSS may interface with other
computer-based systems to acquire its source data or
dispose of its output. Most early DSS were entirely free-
standing and had no direct interactions with any other
systems, but this pattern has begun to change, and
many DSS now require access to large operational data-
bases [5, 211. This trend is likely to continue as more
complex DSS drawing on common data and model
bases are developed. Each system in such a network, in
addition to producing data that other systems could
also use, might also require data produced by other
systems.

DSS ROLE AND FUNCTION
The objective or purpose of DSS has long been defined
as support of a decision-making process. There are,
however, many ways to support decision making.
Three important dimensions of support are level, deci-
sion range, and process.

Alter identifies several DSS types that provide users
with different levels of support [Z], ranging from re-
trieving and displaying raw data to suggesting or select-
ing solutions. There is a hierarchical relationship
among the levels of decision support with each higher
level containing and adding to the previous levels.

Decision range refers to the degree to which support
is generalized versus particularized. DSS can provide
support that is tailored to a particular problem, or even
to a specific individual’s view of a particular problem.
At the other extreme, DSS can provide general analytic
capabilities that will support multiple decision makers
in related problem contexts.

A third dimension of support concerns the process
that is supported. Most DSS literature focuses on sup-
porting individual cognitive processing capabilities [ll]
or on facilitating learning [18]. Other decision-related
processes can be supported, including communication
or coordination among parties involved in the decision
process, and the exercising of control or influence over
the outcome of a decision process [12].

DSS COMPONENTS
Components represent a functional breakdown of the
system and should not be confused with modules or
formal subsystems. The assignment of system functions
to specific software modules is mainly a question of
arrangement and resource allocation.

The DSS design literature [7, 271 identifies three ma-
jor functions or conceptual components necessary for a
DSS: management of the dialogue between the user and
the system, management of data, and management of
models (see Figure 1).

The most pervasive and fundamental aspect of
the DSS environment is people, and the dialogue
management component embodies the specialized
functionality necessary to handle the system’s interac-
tion with its users. The data management component

Mod@
managf-?nient

I
Data A/

Dialogue d
management

, U;;;;;d

External data sources
and neighboring systems

FIGURE 1. DSS Design: Functional Components

reflects a fundamental aspect of the role of DSS-all
levels of decision support are based on access to a set of
data. The need for a model management functionality
is derived from the nature of the tasks to which DSS
are applied, that is, tasks that are only partially struc-
turable and consequently require the manipulation of
underspecified, evolving models.

While there is general agreement about the three
major functional components, there is less agreement
about their specific content. Our view is closer to that
of Sprague and Carlson [27], although it does incorpo-
rate some features of Bonczek et al. [7]. Later in this
article we will examine major relationships between
the various components and other aspects of the sys-
tem, especially environmental conditions or con-
straints.

The dialogue between the user and the system estab-
lishes the framework in which outputs are presented as
well as the context for user inputs. This suggests three
necessary dialogue management capabilities (see
Figure 2):

1. a user interface to handle the syntactic aspects of the
interaction (e.g., the devices, the physical view, and
the style of interaction):

2. a dialogue-control function to determine the basic
semantics of interactions and maintain the interac-
tion context, which could range between strictly
system defined or loosely “user driven”:

October 1985 Volume 28 Number 10 Conmunications of the ACM 1047

Articles

Model
management

\

I

Request
transformer

/
Data management

behind the other two components, but is an active re-
search area [20, 231.

The ideal moclel management facility (see Figure 4)
should provide

User
1.

User - and
interface a task

-_ (n- aIn: (” I. 2.

FIGURE 2. Dialogue Management

3.

4.

a model-base management system (MBMS) to generate,
retrieve, and update parameters, to restructure
models, and to include a “model directory” for
maintaining information about available models;
model execution to control the actual running of the
model and to link models together when integration
is needed;
a modeling command processor to accept and interpret
modeling instructions as they flow out of the dia-
logue component, and to route them to the MBMS
or the model-execution function;
a database interface to retrieve data items from the
database for running models, and, eventually, to
store model outputs in the database for further
processing, perusal, or as input to other models.

3. a request transformer to provide the necessary (two-
way) translations between users’ vocabulary and
the system’s internal modeling and data access
vocabulary.

Model management
The management of data-that is, the ability to store,

retrieve, and manipulate data-is fundamental to any
service that al DSS provides. The data management
component maintains the factual basis (including possi-
ble links and associations) of the DSS. The specific ca- \
pabilities required (see Figure 3) for the management of
data in a DSS are

I -

Query
facility

Dialogue management

/

a database and a database management system (DBMS)
to.provide an access mechanism to data in it;
a data directory to maintain data definitions and
descriptions of the types and sources of data in the
system;
a query facility to interpret requests for data (from
either of the other major components), determine
how these requests could be filled (consulting, pos-
sibly, the data directory), formulate the DBMS-

’ ’ 1
Data DBMS and a

specific requests for data, and, finally, return the /
/

directory database

t
/
I

results to the issuer of the original request;
a staging and extraction function for acc.essing exter-
nal sourc13s of (especially historic) data., and con-
netting the DSS with its relevant neighboring sys-
terns (databases or possibly multiple other DSS,
either personal or centralized).

Staging

The mechanism for explicit managemen.t of models
and modeling, activity is what distinguishes DSS from
more traditional information-processing systems. The

.
ability to invoke, run, change, combine, and inspect
models is a key capability in DSS and therefore a core
service. Any support beyond direct access to raw data
requires the a.pplication of a model. In particular, infer-
ential retrieval of data from the database [7] is achieved
through a model-driven process. The state of develop-
ment of model management functionality :still lags far

External sources
of data

FIGURE 3. Data Management

1048 Communication:; of the ACM October 1985 Volume 28 Number 10

Articles

ARRANGEMENT OF DSS COMPONENTS
The systemic view of DSS suggests that architecture
(component arrangement), like components, has to be
justified in the broader context of environment and
role. Moreover, architecture cannot be independent of
the available resources. For example, some DBMS prod-
ucts already contain a dialogue management function,
eliminating the explicit interaction between such sepa-
rate components.

In general the linkages among the DSS components,
the nature of these linkages, and especially the justifi-
cation for them in terms of environment and role have
been treated in an extremely limited fashion. Sprague
and Carlson introduce four generic architectures: the
“Network,” the “Bridge,” the “Sandwich,” and the
“Tower” [27], but their discussion of these architectures
completely fails to embed them in the overall context
of the DSS, and the appropriateness of each arrange-
ment in various decision situations is never analyzed.
In addition, the advantages and drawbacks of the four
architectures are related solely to ease of construction
and to the internally oriented concerns of system engi-
neering. In fact, two of these “architectures,” the Bridge
and the Network, are merely specific implementations
of the generic DSS structure shown in Figure 1. Treat-
ing these as distinct architectures serves only to con-
fuse the notion of components (needed functionality)
and resources (the way functionality is provided).

The section below on DSS design includes a discus-
sion of some major links between DSS environment,
role, and architecture.

DSS RESOURCES
It is only after the DSS has been designed-after the
components and their “ideal” arrangement have been
selected-that resources should be considered. The key
questions are, How can the proposed DSS best be real-
ized? How close to that ideal can a feasible system
come? Which resources should be employed to build
and support the DSS?

The resources available for DSS fall into four major
categories: hardware, software, people, and data. Hard-
ware includes processors, terminals, storage media, and
communication networks. None of these is unique to
DSS. Some linkages, however, can be made between
DSS environment and role, and hardware configura-
tion. These are discussed in the section on DSS design.

There are four types of DSS software: general-purpose
programming languages, DSS tools, DSS generators, and
generalized DSS. Ultimately, all DSS software is built
upon general-purpose programming languages, and any
DSS can be written using only this type of language.
However, general-purpose programming languages, or
even very high-level languages like APL, provide only
limited leverage for the development of DSS.

DSS tools are single-function building blocks that can
be used to construct DSS; that is, they address only one
of the major DSS components/functions. Four key
types of DSS tools are DBMS, model management sys-

Model-base

/ ;iyiEz \

\

Dialogue
management system Model / management

execution

/

Database
interface

\

Data management

FIGURE 4. Model Management

terns, dialogue management systems, and arrangement
packages. Arrangement packages, often referred to as
“software environments” or “windowing packages” [8],
address the interfaces among the other subsystems, but
not the content of any of them.

DSS generators are, in essence, a collection of DSS
tools. They are software packages that address all three
DSS functionalities (at least to some extent) and that
can be used to construct DSS tailored to specific prob-
lems or problem situations. A typical example of a DSS
generator is a modeling package (such as EXPRESS,
EMPIRE, or IFPS) that includes some data management
capabilities as well as dialogue/presentation facilities.

Generalized DSS provide support for a class of prob-
lems. For example, a generalized DSS for scheduling
and assignment is conceivable in which professors
could be assigned to classes, operators to shifts, or spe-
cialists to projects. All of these scheduling decisions
share a similar structure and, more importantly, a
model base. Generalized DSS (e.g., PERT/CPM systems)
fall between DSS generators and specific DSS in terms
of generality and the amount of effort required to apply
them to specific problems. They provide capabilities
that can be applied directly to a decision problem, and
do not require the extensive customization and devel-
opment needed with a DSS generator. Their generality,
however, means that some of the linkages and transi-
tions that would be built into a specific DSS must be
performed manually. Generalized DSS are becoming
an increasingly popular mechanism for providing de-
cision support as more and more people want decision-
support tools, but specifically tailored DSS either
are not readily available or are too expensive in
resource-constrained situations.

For a DSS, the people resource is conceptually differ-

October 1985 Volume 28 Number 10 Communications of the ACM 1049

Articles

ent from the user-community dimension of the sys-
tem’s environment. This resource provides one of the
clearest examples of the substitutability of alternative
resources in DSS design. It is almost always necessary
to acquire data from other systems for the DSS. This
staging mechanism can be a hardware brbdge, a hard-
ware/software bridge, or a human bridge. The issue is
to recognize that there are many roles in developing
and operating a DSS that can, but need not, be played
by humans; the choice should depend on the avail-
ability and relative cost of both human and other

-resources.
Data resources include the various sources of data

available to the DSS. This includes internal, operational
data as well as externally available data. The latter
could come from generally accessible databases or may
be the result of special studies.

DSS DESIGN: LINKING THE SYSTEM ASPECTS
In this section we will discuss some of the major con-
tingencies between a DSS’s internal structure and its
role, environmental conditions, and resou:rce availabil-
ity. More exhaustive identification and validation of
such linkages are clearly needed.

Task Structurability
Task structurability directly impacts the model compo-
nent of the DSS. Models can be maintained in the
MBMS in a variety of forms, ranging from subroutines
(where the model base is a software library), to more
abstract and manipulable forms, where models are
treated like data [19]. When tasks are highly structura-
ble, procedural model specification (e.g., as subroutines)
is appropriate, whereas low structurability suggests a
more flexible, declarative, and “open-ended” form of
model definition (e.g., production rules).

Low structurability also suggests that thla model-
*execution function should interact directly with the
dialogue component, both for eliciting user-provided
parameters and for handling user interventions (e.g.,
intermittent perusal of variable values). A related issue
is the design of the dialogue-control function: “System-
prompted” dialogue fits situations with relatively high
levels of structure, whereas “user-driven” dialogue is
appropriate where no predefined sequence of activities

_ can be specified.

.

Task Level
One obvious impact of task level is on the needed data
resources and on the facilities for accessing them-that
is, on the staging function in the data man,agement
component. Operational control tasks are likely to re-
quire access to current operational data. The DSS, then,
must provide an on-line linkage to data files main-
tained by operational systems. Strategic planning tasks,
on the other hand, may require access to external data
sources, but probably not on a continuously on-line
basis. These DSS must include a mechanism for remote

--

1050-y Communication:; of the ACM

access and for selective extracting of data from extra-
organizational sources.

Task level may interact with the type of support to
impact the selection of hardware resources. A stand-
alone microcomputer-based DSS may be an.appropriate
support system for senior managers in a strategic deci-
sion situation (e.g., new product selection)-little data
are needed, the data do not come from the operational
stream, and the system is meant primarily to provide
cognitive support to individual managers. On the other
hand, providing support for real-time operational deci-
sions (e.g., production control) in a complex produc-
tion environment would best be accomplished on a
mainframe-based DSS with good data communications
capabilities. This type of support requires a substantial
quantity of quite volatile, operational data, and the pri-
mary purpose is to assure coordination among the mul-
tiple parties involved in the decision.

Decision Process Phase
The decision-process phase can impact the need for a
directory. The data directory in a DSS provides the
basis for answering questions about the availability of
data items, their sources, and their exact meanings. As
such it is most important in systems that support the
intelligence phase of the decision-making process,
where data exploration is of paramount concern.

Functional Area
The functional area determines the set of verbs and
objects useful in the specific problem-solving situation.
Both the request transformer and the dialogue control
should reflect this user vocabulary.

Modes of User Interaction
The desired interaction mode has obvious implications
for both resources and the arrangement of components.
On-line interaction, for example, limits the selection of
employable resources and calls for tighter intermodule
linkages (immediate exchange of messages is neces-
sary), while batch-oriented design can use data files on
secondary storage as a medium for message exchange.

User Community
The design of the user interface should be determined
by the nature of the user community. Criteria such as
the proficiency of users and frequency of use should be
the basis for selecting the interaction style the interface
will accommodate (e.g., menu-driven or Q/A-driven
dialogue).

Relationship to Other Computer-Based Systems
Neighboring systems have the greatest effect on the
staging function-the DSS structure should directly re-
flect the nature of the data sources in its environment.
For example, if remote databases are included, some
data-communication facility is necessary. Likewise, the
selection of a data model-the data structures in the

October 1985 Volume 28 Number 10

Articles

database and valid operations on it-is contingent upon
the structure of the available external data.

Level of Support
As noted earlier, access to data underlies all DSS roles.
Levels of support differ, however, in the degree of
model intensity they imply. Consequently, the arrange-
ment of DSS components-the nature and layout of
linkages among components-should be contingent
upon the model intensity of the service to be provided.
The Sandwich architecture [27] forces all access to data
to be mediated by a model by removing the linkage
between dialogue management and data management
(cf. Figure 1). This is appropriate in the higher levels in
Alter’s classification of decision support [2] where
models are more dominant and, in fact, drive the deci-
sion process. Less model-intensive support is better pro-
vided by a different architecture in which the direct
linkage between model management and data man-
agement is removed. This architecture, which we call
“Exploratory,” requires the user to direct all data move-
ments between models and the database.

IMPLICATIONS OF THE SYSTEMIC VIEW
The fact that a number of interesting issues are indeed
raised demonstrates the usefulness of the systemic
view. Perhaps the clearest implication of the systemic
view for DSS design is the necessity of taking an
“outside-in” approach. The selection of components and
their arrangement (the “inside”) must follow from an
understanding of the environment and role (the “out-
side”). Unfortunately, recent books on DSS design have
provided only limited guidance for relating environ-
mental conditions to the specific system components or
to their arrangement. The focus of early DSS literature
[14] on the system’s environment and role was critical.
These elements are central to explaining why DSS are
different from traditional information systems and why
they will probably be built differently. More recent DSS
literature has focused on resources, components, and
architecture (arrangement) [6, 271. It is only when all of
these elements are considered in the context of envi-
ronment and role that true understanding and insight
can be developed. A change from “coming up with de-
signs” to explicit derivation and justification of compo-
nents and architectures is needed in DSS research strat-
egy. Such a change does not imply that the study of
single system elements should be avoided, but it does
suggest that in any study we must first understand the
context.

Future DSS research should move in the direction of
gaining a better understanding of the range of DSS en-
vironments and roles. Although the practical use of
DSS has permeated a substantial array of decision envi-
ronments-from labor negotiations to military combat
situations-the major share of DSS research to date has
focused on a limited set of environmental conditions,
typically, the intelligence and choice phases of organi-
zationally isolated, financial decisions. The discussion

in the preceding section of this article is a first step
toward an explicit DSS design theory in which design is
contingent on comprehensive notions of environment
and role. Further work is needed, however, to develop
a design-relevant taxonomy of DSS environments, iden-
tifying key environmental characteristics and the con-
straints they place on the choice of DSS components,
their arrangement, and the resources they require.

One environmental characteristic that is likely to be
increasingly important for future DSS is the other sys-
tems with which the DSS must interact. There has been
only a preliminary attempt to examine DSS that inter-
face directly with other computer-based systems [27].
The trend toward interconnected systems, however, is
quite clear [28], and many DSS in the future will be
required to interact with other DSS, traditional infor-
mation systems, etc. Research is still needed to under-
stand both the range of potential interaction patterns
and the requirements and constraints they will place
on DSS design and development.

The systemic view sharpens the distinction between
system components and resources. It suggests a meth-
odology for evaluating resources and a basis for making
educated decisions about the consumption of these re-
sources. Given the popular marketing strategy of label-
ing every product a DSS, it is important that a more
critical approach be adopted by potential users. Such an
approach is not meant to discredit one product or an-
other, but rather to identify the capabilities of each and
to serve as a guideline in selecting resources and
matching them with the required functionality of the
DSS. The four levels of software resources discussed
earlier in this article represent differing degrees of com-
prehensiveness and integration. Choice among them
would depend, at least in part, on the availability of
complementary design and development skills.

Recognition of the fact that resources constitute only
one aspect of the system suggests that a modification in
the focus of DSS curriculum is needed. Too many DSS
courses are built around a specific tool or tools. This
kind of focus does not give students an understanding
of DSS or provide them with a basis for being educated
consumers of DSS tools. As an alternative we have used
the systemic view as an organizing framework for a
DSS course. In it the analysis of the decision situation
serves as the basis for the development of an “ideal-
ized” system design, against which available resources
can be assessed and critically examined. Resources
(available packages or generators) enter the curriculum
only at its final stages, and the focus at that point is to
evaluate the trade-offs between functionality and ease
of construction-the core of any decision concerning
the employment of resources.

Most DSS literature so far has emphasized the dif-
ferences between DSS and other, more traditional
computer-based systems. The systemic view helps us
see the similarities. Once we have adopted this per-
spective, it becomes apparent that DSS differ from tra-
ditional systems in degree and not in fundamental

October 1985 Volume 28 Number 10 Communications of the ACM 1051

Articles

structure. For instance, large-scale DSS and “institu-
tional DSS” are very similar to classical MIS both in
terms of environment (e.g., anonymous user) and the
constraints this places on design (e.g., run-time effi-
ciency). This suggests that there is much that DSS re-
searchers and developers can learn from prior experi-
ence with other types of computer-based systems, and
that a cumulative experience across types of informa-
tion systems is both possible and desirable.

Recognizing that DSS differ from other systems only
in degree also implies that evolving types of computer-
based systems might be similar to DSS and should not
be treated as totally novel. A case in point is expert
systems (ES). We have observed that some ES devel-
opers are treating these systems as a com.pletely new
phenomenon and are struggling afresh through the
classical problems of MIS/DSS development [25]. The
systemic view makes it clear that ES bear many simi-
larities to DSS. Their environments and roles are quite
similar, and it is mainly a change in the iarrangement
and resources that differentiates them. It is therefore
inappropriate to discard the very relevant experience
with DSS.

CONCLUSION
One may argue that the systemic view has been
embedded in DSS all along. Although this may be true,
this view has receded too far from the surface. Adopt-
ing the systemic approach means giving emphasis to
the relationships among the system aspects, a subject
that has received only limited attention from both the
practical and the theoretical point of view, even though
it is the essence of design activity.

There has been a migration of DSS definitions
from an environment/role focus to a component/
arrangement focus. The systemic view responds to that
“tension” and brings the two under a single comprehen-
sive framework.

Acknowledgment. The authors want to -thank Gordon
Davis for his many helpful comments on earlier ver-
sions of this paper.

REFERENCES
1. Ackoff, R.L. Crowing the Corporate Future. John Wiley, New York,

1981.
2. Alter, S. Decision Support Systems: Current Practice.; and Continuing

Challenges. .4ddison-Wesley, Reading, Mass., 19801.
3. Anthony, R.N. Planning and Control Systems: A Framework for Analy-

sis. Graduate School of Business Administration, Studies in Manage-
ment Control, Harvard University, Cambridge, Mass., 1965.

4. Bennett, J.L.. Ed. Building Decision Support Systems. Addison-Wesley,
Reading, Mass., 1983.

5. Berger, P.. and Edelman, F. IRIS: A transaction-based DSS for human
resources management. Database 8, 3 (1977), 22-29.

6. Bonczek. R..H., Holsapple. C.W., and Whinston. A.B. Foundations of
Decision Support Systems. Academic Press, New York, 1981.

7. Bonczek, R..H.. Holsapple, C.W., and Whinston, A.B. The evolution
from MIS to DSS: Extension of data management to model manage-
ment. In Detrision Support Systems, M.J. Ginzberg, W.R. Reitman, and
E.A. Stohr. Izds. North-Holland, Amsterdam, 1982. pp. 61-78.

8. BusinessWeak. A fierce battle brews over the simplest software yet.
BusinessWeek (Nov. 21, 1983). 114-115.

9. Churchman, C.W. The System Approach. Dell, New York, 1968.
10. Emery, J.C. Organizational Planning and Control Systems: Theory and

Technology. Macmillan, New York, 1969.
11,

12.

Ginzberg. M.J. DSS success: Measurement and facilitation. In Data-
Base Management: Theory and Applications, C.W. Holsapple and A.B.
Whinston, Eds. Reidel, Hingham, Mass., 1983, pp. 367-387.
Ginzberg, M.J., and Stohr, E.A. Decision support systems: Issues and
perspectives. In Decision Support Systems, M.J. Ginzberg, W.R.
Reitman, and E.A. Stohr, Eds. North-Holland, Amsterdam, 1982, pp.
9-32.

13.

14.

15.

16.

17.

18.

Gerry, G.A., and Krumland, R.B. Artificial intelligence research and
decision support systems. In Building Decision Support Sysfestems, J.L.
Bennett, Ed. Addison-Wesley, Reading, Mass., 1983, pp. 205-219.
Gerry, G.A.. and Scott-Morton, MS. A framework for management
information systems. Sloan Manage. Rev. 13, 1 (Winter 1971), 55-70.
Huber, G.P. Cognitive style and DSS designs: Much ado about noth-
ing? Manage. Sci. 29,5 (May 1983), 567-579.
Keen, P.G.W. “Interactive” computer systems for managers: A mod-
est proposal. Sloan Manage. Rev. (Fall 1976), l-17.
Keen, P.G.W. Adaptive design for decision support systems. Data
Base 12, 1-2 (Fall 1980), 31-40.
Keen, P.G.W., and Gambino, T.J. Building a decision support system:
The mythical man-month revisited. In Building Decision Support Sys-
tems, J.L. Bennett, Ed. Addison-Wesley, Reading, Mass., 1983, pp.
133-172.

19.

20.

21.

22.

23.

24.

Konsynski, B. On the structure of a generalized model management
system. In Proceedings of the 14th Annual Hawaii International Confer-
ence on System Sciences (North Hollywood, Calif., Jan.). Univ. of
Hawaii, 1980. pp. 19-31.
Konsynski, B., and Dolk, D.R. Knowledge abstractions in model
management. DSS-82 Trans. (June 1982), 19-31.
Laning. L.J., Walla, G.O.. and Airaghi, L.S. A DSS Oversight-Histor-
ical Databases. DSS-82 Trans. (June 1982). 87-95.
Little, J.D.C. Models and managers: The concept of decision calcu-
lus. Manage. Sci. 16, 8 (Apr. 1970), B466-B485.
Miller, L.W., and Katz. N. Model management systems to support
policy analysis. DS-WP 82-11-01, Decision Sciences Dept., Univ. of
Pennsylvania, Philadelphia, Apr. 1983.
Moore, J.H., and Chang, M.G. Design of decision support systems.
Data Base 12, l-2 (Fall 19801, 8-14.

25. O’Conner, D.E. Using expert systems to manage change and com-
plexity in manufacturing. In Artificial Intelligence Applications for
Business, W.R. Reitman, Ed. Ablex, Norwood, N.J.. 1984.

26. Simon, H.A. The New Science of Management Decision. Harper and
Row, New York, 1960.

27. Sprague, R.H., Jr., and Carlson, E.D. Building Effective Decision Sup-
port Sysfems. Prentice-Hall, Englewood Cliffs, N.J., 1982.

28. Zmud, R.W. Large-scale interconnected information systems: Design
considerations for promoting organization adaptation and organiza-
tional adaptability. In Proceedings of the Conference on Large-Scale
Interconnected Systems (Athens, Ohio, Oct. 10-11). School of Business
Administration, Univ. of North Carolina, Chapel Hill, 1983,
pp. 139-149.

CR Categories and Subject Descriptors: D.2.1 [Software Engineer-
ing]: Requirements/Specifications: H.l.l [Models and Principles]: Sys-
tems and Information Theory: H.4.2 [Information Systems Applica-
tions]: Types of Systems; J.1 [Administrative Data Processing]

General Terms: Design, Management
Additional Key Words and Phrases: decision support systems, sys-

tems design process, systems theory

Authors’ Present Addresses: Gad Ariav, Computer Applications and In.
formation Systems, Graduate School of Business Administration, New
York University, 100 Trinity Place, New York, NY 10006: Michael J.
Ginzberg, The Weatherhead School of Management, Case Western Re-
serve University, Cleveland, OH 44106.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

1052 Communicatiorrs of the ACM October 1985 Volume 28 Number IO

