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DSS DESIGN: A SYSTEMIC VIEW 
OF DECISION SUPPORT 

A systemic view of DSS can provide a concrete framework for effective 
design of DSS and can also serve as a basis for accumulating DSS research 
results. 

GAD ARIAV and MICHAEL J. GINZBERG 

DSS studies have typically focused on a single set of 
related issues. Whiie some studies have dealt exten- 
sively with the nature of decision situations and with 
the type of services provided by a DSS [14, 221, others 
have examined components, tools, and technologies 
that are needed to provide decision support services [7], 
and still another group has emphasized the processes of 
DSS design, implementation, and use [17, 241. Yet, 
there has been no effective integration of these diverse 
elements to date, and this lack of a unified approach to 
the subject has hampered efforts to develop a solid 
basis for DSS design. Research focusing solely on com- 
ponents or resources can offer only limited help in the 
design of DSS. Recent books on DSS design [4, 6, 271 
have proposed a basic set of DSS components, but do 
not make explicit the necessary contingent relation- 
ships between the structural aspect of a system and the 
services it is expected to provide or the characteristics 
of the environment in which it will operate. 

The premise of the systemic view of DSS is that in 
order to understand these systems the following five 
aspects must be considered simultaneously: environ- 
ment, role, components, arrangement of components, 
and the resources required to support the system [g]. A 
meaningful DSS design must explicitly link these five 
aspects so that characteristics of the system’s environ- 
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ment and role will be reflected in its components and 
their arrangement. 

As the name DSS implies, the objects we are discuss- 
ing are indeed systems, and yet this perspective has 
been lost in much of the DSS literature. The purpose of 
this article is to present a comprehensive view of DSS 
using the systemic framework as an organizing concept. 
No new terminology will be introduced. Instead, we 
will use the concepts of systems theory to integrate the 
disparate perspectives in the DSS literature into a con- 
sistent and coherent body of knowledge. This inte- 
grated view will then help to provide new insights for 
DSS design, research, and curricula. 

THE ASPECTS OF A SYSTEM 
The fundamental premise of systems theory or the sys- 
tems approach is that systems, regardless of their spe- 
cific context, share a common set of elements [g]. 
Briefly, the system elements are the following: 

l The environment is the set of entities and conditions 
outside of the system boundary that affects the sys- 
tem or is affected by it. The entities in the environ- 
ment may be affected by the system, but are not 
control!ed by it. 

l The role, function, or objective of a system represents 
its intended impact on its environment. It specifies 
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which services the system is supposed to deliver and 
what its goals are. It als,o provides the basis for evalu- 
ating the system and thus should be specified in 
terms that are amenable to measurement. 

l The compclnents of the system are the identifiable ele- 
ments within the system boundary. Typically these 
components represent the functional building blocks 
of the system. Two common bases for component def- 
inition are division of labor and specialization by 
environmental segment. The former relates to the 
ability to perform effectively a particular, necessary 
task, while the latter relates to the ability to interface 
with a particular aspect of the environment. 

l Arrangemerzt concerns the links among the system 
components and between them and the environmen- 
tal elements. The fundamental concern in arranging 
components is the balance between coordination and 
autonomy [lo]. Generally it is preferable to have the 
minimum of interdependence among components, 
which still allows the system as a whole to serve its 
function. The two key dimensions of arrangement 
are the configuration or layout of the links among 
componems. and the nature of these links. 

l System resources are the elements that are used or 
consumed in building and operating the system. Like 
the environment, resources exist outside the system 
boundary. Resources are differentiated from the en- 
virotiment in that they are partially controllable-if 
not in total quantity available, at least in the mix that 
will be used. Resources may include people, raw ma- 
terials, capital, tools and techniques, etc. 

Systems thought emphasizes the need to take a holis- 
tic view in order to explain why an object is structured 
as it is, or how it should be structured. Thus, the sys- 
tem study starts from the outside, identifying the envi- 
ronment in which the object exists and the way it 
impacts that environment-that is, its role. Only after 
these external1 aspects of the system have been studied 
does it make sense to consider the components and 
their arrangement. 

An intelligent selection of resources cannot be made 
until the other four system aspects have been consid- 
ered. Resources are differentiated from system compo- 
nents and should be discussed last to ensure that the 
functional composition of the system is not unduly 
biased by the perceived availability of resources. Design 
should proceed from an “ideal” system to a critical re- 
view of resource availability, and then to a feasible 
system [I]. 

Let us now examine the five system aspects in the 
DSS context. 

DSS ENVIRONMENT 
The description of a DSS environment should be design 
relevant: it sh[ould highlight only those environmental 
features that have, or should have, an impact on the 
system structure. There seem to be at least two impor- 
tant dimensions to a DSS environment-task character- 
istics and aco3ss pattern. 
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Task Characteristics 
Task characteristics have been discussed frequently in 
the DSS literature, but a somewhat broader range of 
task aspects is needed. 

The task characteristic most frequently associated 
with DSS is the degree to which the decision maker can 
apply predefined rules and procedures-that is, task 
structurability [‘12]. Gorry and Scott-Morton [14] used 
task structure as a key concept for defining the appro- 
priate environment for DSS. More recent work has sug- 
gested that there is no inherent structure to the task 
itself, only structure as perceived by individuals [24]. 
Therefore, instead of task structure, the characteristic 
of interest should be task structurability, the possibility 
of bringing structure to bear on a task, which is depen- 
dent upon both the individual performing the task and 
the task itself. 

A second key task characteristic is its level--that is, 
operational control. management control, or strategic 
planning [3]. This characteristic has also been discussed 
in much of the “classic” DSS literature [la], and the 
suggestion has often been made that DSS might be ap- 
propriate only at higher levels. More recent DSS litera- 
ture claims that DSS may be appropriate at any level 
[ll, 13, 271. 

The third characteristic is the decision-process 
phase-intelligence, design, or choice [26]. Most DSS 
have been used at the solution-selection and choice 
phase, or, to a lesser extent, the intelligence and 
problem-definition phase of the decision-making pro- 
cess. DSS, however, are also applicable to the design 
and alternative-generation phase, and the pattern of 
use to date mainly reflects the difficulty of designing 
systems to support this phase. 

The fourth is the functional area of the application- 
for example, finance, marketing, and production. The 
differences in the demands and constraints that dif- 
ferent functional areas place on a DSS may be as sig- 
nificant as those resulting from any of the other task 
dimensions. 

Access Pattern 
The access pattern encompasses three major concerns 
in DSS design. The first of these is the mode of user 
interaction. The early DSS literature assumed that use 
would always be highly interactive; that the decision 
maker would interact with the DSS as a decision was 
being made [14]. Although some DSS are used in this 
manner, it has become clear that at least as many oth- 
ers are not [12, 161. User interaction with a DSS can 
range from true on-line dialogue to intermittent batch 
use. 

The access pattern also captures the salient “dimen- 
sions” of the user community, including the number of 
people who use the system, their expertise in compute] 
usage or the problem area, and their role in the deci- 
sion process. One dimension of the user community, 
which has been discussed in the literature but which 
we do not include at this time, is cognitive style. We 
agree with Huber’s assessment [15] that not enough is 
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known about the impact of cognitive style to make 
design-relevant prescriptions. 

Finally there is the relationship to “neighboring” in- 
formation systems. A DSS may interface with other 
computer-based systems to acquire its source data or 
dispose of its output. Most early DSS were entirely free- 
standing and had no direct interactions with any other 
systems, but this pattern has begun to change, and 
many DSS now require access to large operational data- 
bases [5, 211. This trend is likely to continue as more 
complex DSS drawing on common data and model 
bases are developed. Each system in such a network, in 
addition to producing data that other systems could 
also use, might also require data produced by other 
systems. 

DSS ROLE AND FUNCTION 
The objective or purpose of DSS has long been defined 
as support of a decision-making process. There are, 
however, many ways to support decision making. 
Three important dimensions of support are level, deci- 
sion range, and process. 

Alter identifies several DSS types that provide users 
with different levels of support [Z], ranging from re- 
trieving and displaying raw data to suggesting or select- 
ing solutions. There is a hierarchical relationship 
among the levels of decision support with each higher 
level containing and adding to the previous levels. 

Decision range refers to the degree to which support 
is generalized versus particularized. DSS can provide 
support that is tailored to a particular problem, or even 
to a specific individual’s view of a particular problem. 
At the other extreme, DSS can provide general analytic 
capabilities that will support multiple decision makers 
in related problem contexts. 

A third dimension of support concerns the process 
that is supported. Most DSS literature focuses on sup- 
porting individual cognitive processing capabilities [ll] 
or on facilitating learning [18]. Other decision-related 
processes can be supported, including communication 
or coordination among parties involved in the decision 
process, and the exercising of control or influence over 
the outcome of a decision process [12]. 

DSS COMPONENTS 
Components represent a functional breakdown of the 
system and should not be confused with modules or 
formal subsystems. The assignment of system functions 
to specific software modules is mainly a question of 
arrangement and resource allocation. 

The DSS design literature [7, 271 identifies three ma- 
jor functions or conceptual components necessary for a 
DSS: management of the dialogue between the user and 
the system, management of data, and management of 
models (see Figure 1). 

The most pervasive and fundamental aspect of 
the DSS environment is people, and the dialogue 
management component embodies the specialized 
functionality necessary to handle the system’s interac- 
tion with its users. The data management component 
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FIGURE 1. DSS Design: Functional Components 

reflects a fundamental aspect of the role of DSS-all 
levels of decision support are based on access to a set of 
data. The need for a model management functionality 
is derived from the nature of the tasks to which DSS 
are applied, that is, tasks that are only partially struc- 
turable and consequently require the manipulation of 
underspecified, evolving models. 

While there is general agreement about the three 
major functional components, there is less agreement 
about their specific content. Our view is closer to that 
of Sprague and Carlson [27], although it does incorpo- 
rate some features of Bonczek et al. [7]. Later in this 
article we will examine major relationships between 
the various components and other aspects of the sys- 
tem, especially environmental conditions or con- 
straints. 

The dialogue between the user and the system estab- 
lishes the framework in which outputs are presented as 
well as the context for user inputs. This suggests three 
necessary dialogue management capabilities (see 
Figure 2): 

1. a user interface to handle the syntactic aspects of the 
interaction (e.g., the devices, the physical view, and 
the style of interaction): 

2. a dialogue-control function to determine the basic 
semantics of interactions and maintain the interac- 
tion context, which could range between strictly 
system defined or loosely “user driven”: 
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behind the other two components, but is an active re- 
search area [20, 231. 

The ideal moclel management facility (see Figure 4) 
should provide 
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FIGURE 2. Dialogue Management 

3. 

4. 

a model-base management system (MBMS) to generate, 
retrieve, and update parameters, to restructure 
models, and to include a “model directory” for 
maintaining information about available models; 
model execution to control the actual running of the 
model and to link models together when integration 
is needed; 
a modeling command processor to accept and interpret 
modeling instructions as they flow out of the dia- 
logue component, and to route them to the MBMS 
or the model-execution function; 
a database interface to retrieve data items from the 
database for running models, and, eventually, to 
store model outputs in the database for further 
processing, perusal, or as input to other models. 

3. a request transformer to provide the necessary (two- 
way) translations between users’ vocabulary and 
the system’s internal modeling and data access 
vocabulary. 

Model management 
The management of data-that is, the ability to store, 

retrieve, and manipulate data-is fundamental to any 
service that al DSS provides. The data management 
component maintains the factual basis (including possi- 
ble links and associations) of the DSS. The specific ca- \ 
pabilities required (see Figure 3) for the management of 
data in a DSS are 

I - 

Query 
facility 

Dialogue management 
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a database and a database management system (DBMS) 
to.provide an access mechanism to data in it; 
a data directory to maintain data definitions and 
descriptions of the types and sources of data in the 
system; 
a query facility to interpret requests for data (from 
either of the other major components), determine 
how these requests could be filled (consulting, pos- 
sibly, the data directory), formulate the DBMS- 
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specific requests for data, and, finally, return the / 
/ 

directory database 
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results to the issuer of the original request; 
a staging and extraction function for acc.essing exter- 
nal sourc13s of (especially historic) data., and con- 
netting the DSS with its relevant neighboring sys- 
terns (databases or possibly multiple other DSS, 
either personal or centralized). 

Staging 

The mechanism for explicit managemen.t of models 
and modeling, activity is what distinguishes DSS from 
more traditional information-processing systems. The 

. . . . . 
ability to invoke, run, change, combine, and inspect 
models is a key capability in DSS and therefore a core 
service. Any support beyond direct access to raw data 
requires the a.pplication of a model. In particular, infer- 
ential retrieval of data from the database [7] is achieved 
through a model-driven process. The state of develop- 
ment of model management functionality :still lags far 

External sources 
of data 

FIGURE 3. Data Management 
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ARRANGEMENT OF DSS COMPONENTS 
The systemic view of DSS suggests that architecture 
(component arrangement), like components, has to be 
justified in the broader context of environment and 
role. Moreover, architecture cannot be independent of 
the available resources. For example, some DBMS prod- 
ucts already contain a dialogue management function, 
eliminating the explicit interaction between such sepa- 
rate components. 

In general the linkages among the DSS components, 
the nature of these linkages, and especially the justifi- 
cation for them in terms of environment and role have 
been treated in an extremely limited fashion. Sprague 
and Carlson introduce four generic architectures: the 
“Network,” the “Bridge,” the “Sandwich,” and the 
“Tower” [27], but their discussion of these architectures 
completely fails to embed them in the overall context 
of the DSS, and the appropriateness of each arrange- 
ment in various decision situations is never analyzed. 
In addition, the advantages and drawbacks of the four 
architectures are related solely to ease of construction 
and to the internally oriented concerns of system engi- 
neering. In fact, two of these “architectures,” the Bridge 
and the Network, are merely specific implementations 
of the generic DSS structure shown in Figure 1. Treat- 
ing these as distinct architectures serves only to con- 
fuse the notion of components (needed functionality) 
and resources (the way functionality is provided). 

The section below on DSS design includes a discus- 
sion of some major links between DSS environment, 
role, and architecture. 

DSS RESOURCES 
It is only after the DSS has been designed-after the 
components and their “ideal” arrangement have been 
selected-that resources should be considered. The key 
questions are, How can the proposed DSS best be real- 
ized? How close to that ideal can a feasible system 
come? Which resources should be employed to build 
and support the DSS? 

The resources available for DSS fall into four major 
categories: hardware, software, people, and data. Hard- 
ware includes processors, terminals, storage media, and 
communication networks. None of these is unique to 
DSS. Some linkages, however, can be made between 
DSS environment and role, and hardware configura- 
tion. These are discussed in the section on DSS design. 

There are four types of DSS software: general-purpose 
programming languages, DSS tools, DSS generators, and 
generalized DSS. Ultimately, all DSS software is built 
upon general-purpose programming languages, and any 
DSS can be written using only this type of language. 
However, general-purpose programming languages, or 
even very high-level languages like APL, provide only 
limited leverage for the development of DSS. 

DSS tools are single-function building blocks that can 
be used to construct DSS; that is, they address only one 
of the major DSS components/functions. Four key 
types of DSS tools are DBMS, model management sys- 
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FIGURE 4. Model Management 

terns, dialogue management systems, and arrangement 
packages. Arrangement packages, often referred to as 
“software environments” or “windowing packages” [8], 
address the interfaces among the other subsystems, but 
not the content of any of them. 

DSS generators are, in essence, a collection of DSS 
tools. They are software packages that address all three 
DSS functionalities (at least to some extent) and that 
can be used to construct DSS tailored to specific prob- 
lems or problem situations. A typical example of a DSS 
generator is a modeling package (such as EXPRESS, 
EMPIRE, or IFPS) that includes some data management 
capabilities as well as dialogue/presentation facilities. 

Generalized DSS provide support for a class of prob- 
lems. For example, a generalized DSS for scheduling 
and assignment is conceivable in which professors 
could be assigned to classes, operators to shifts, or spe- 
cialists to projects. All of these scheduling decisions 
share a similar structure and, more importantly, a 
model base. Generalized DSS (e.g., PERT/CPM systems) 
fall between DSS generators and specific DSS in terms 
of generality and the amount of effort required to apply 
them to specific problems. They provide capabilities 
that can be applied directly to a decision problem, and 
do not require the extensive customization and devel- 
opment needed with a DSS generator. Their generality, 
however, means that some of the linkages and transi- 
tions that would be built into a specific DSS must be 
performed manually. Generalized DSS are becoming 
an increasingly popular mechanism for providing de- 
cision support as more and more people want decision- 
support tools, but specifically tailored DSS either 
are not readily available or are too expensive in 
resource-constrained situations. 

For a DSS, the people resource is conceptually differ- 
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ent from the user-community dimension of the sys- 
tem’s environment. This resource provides one of the 
clearest examples of the substitutability of alternative 
resources in DSS design. It is almost always necessary 
to acquire data from other systems for the DSS. This 
staging mechanism can be a hardware brbdge, a hard- 
ware/software bridge, or a human bridge. The issue is 
to recognize that there are many roles in developing 
and operating a DSS that can, but need not, be played 
by humans; the choice should depend on the avail- 
ability and relative cost of both human and other 

-resources. 
Data resources include the various sources of data 

available to the DSS. This includes internal, operational 
data as well as externally available data. The latter 
could come from generally accessible databases or may 
be the result of special studies. 

DSS DESIGN: LINKING THE SYSTEM ASPECTS 
In this section we will discuss some of the major con- 
tingencies between a DSS’s internal structure and its 
role, environmental conditions, and resou:rce availabil- 
ity. More exhaustive identification and validation of 
such linkages are clearly needed. 

Task Structurability 
Task structurability directly impacts the model compo- 
nent of the DSS. Models can be maintained in the 
MBMS in a variety of forms, ranging from subroutines 
(where the model base is a software library), to more 
abstract and manipulable forms, where models are 
treated like data [19]. When tasks are highly structura- 
ble, procedural model specification (e.g., as subroutines) 
is appropriate, whereas low structurability suggests a 
more flexible, declarative, and “open-ended” form of 
model definition (e.g., production rules). 

Low structurability also suggests that thla model- 
*execution function should interact directly with the 
dialogue component, both for eliciting user-provided 
parameters and for handling user interventions (e.g., 
intermittent perusal of variable values). A related issue 
is the design of the dialogue-control function: “System- 
prompted” dialogue fits situations with relatively high 
levels of structure, whereas “user-driven” dialogue is 
appropriate where no predefined sequence of activities 

_ can be specified. 

. 

Task Level 
One obvious impact of task level is on the needed data 
resources and on the facilities for accessing them-that 
is, on the staging function in the data man,agement 
component. Operational control tasks are likely to re- 
quire access to current operational data. The DSS, then, 
must provide an on-line linkage to data files main- 
tained by operational systems. Strategic planning tasks, 
on the other hand, may require access to external data 
sources, but probably not on a continuously on-line 
basis. These DSS must include a mechanism for remote 

-- 
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access and for selective extracting of data from extra- 
organizational sources. 

Task level may interact with the type of support to 
impact the selection of hardware resources. A stand- 
alone microcomputer-based DSS may be an.appropriate 
support system for senior managers in a strategic deci- 
sion situation (e.g., new product selection)-little data 
are needed, the data do not come from the operational 
stream, and the system is meant primarily to provide 
cognitive support to individual managers. On the other 
hand, providing support for real-time operational deci- 
sions (e.g., production control) in a complex produc- 
tion environment would best be accomplished on a 
mainframe-based DSS with good data communications 
capabilities. This type of support requires a substantial 
quantity of quite volatile, operational data, and the pri- 
mary purpose is to assure coordination among the mul- 
tiple parties involved in the decision. 

Decision Process Phase 
The decision-process phase can impact the need for a 
directory. The data directory in a DSS provides the 
basis for answering questions about the availability of 
data items, their sources, and their exact meanings. As 
such it is most important in systems that support the 
intelligence phase of the decision-making process, 
where data exploration is of paramount concern. 

Functional Area 
The functional area determines the set of verbs and 
objects useful in the specific problem-solving situation. 
Both the request transformer and the dialogue control 
should reflect this user vocabulary. 

Modes of User Interaction 
The desired interaction mode has obvious implications 
for both resources and the arrangement of components. 
On-line interaction, for example, limits the selection of 
employable resources and calls for tighter intermodule 
linkages (immediate exchange of messages is neces- 
sary), while batch-oriented design can use data files on 
secondary storage as a medium for message exchange. 

User Community 
The design of the user interface should be determined 
by the nature of the user community. Criteria such as 
the proficiency of users and frequency of use should be 
the basis for selecting the interaction style the interface 
will accommodate (e.g., menu-driven or Q/A-driven 
dialogue). 

Relationship to Other Computer-Based Systems 
Neighboring systems have the greatest effect on the 
staging function-the DSS structure should directly re- 
flect the nature of the data sources in its environment. 
For example, if remote databases are included, some 
data-communication facility is necessary. Likewise, the 
selection of a data model-the data structures in the 
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database and valid operations on it-is contingent upon 
the structure of the available external data. 

Level of Support 
As noted earlier, access to data underlies all DSS roles. 
Levels of support differ, however, in the degree of 
model intensity they imply. Consequently, the arrange- 
ment of DSS components-the nature and layout of 
linkages among components-should be contingent 
upon the model intensity of the service to be provided. 
The Sandwich architecture [27] forces all access to data 
to be mediated by a model by removing the linkage 
between dialogue management and data management 
(cf. Figure 1). This is appropriate in the higher levels in 
Alter’s classification of decision support [2] where 
models are more dominant and, in fact, drive the deci- 
sion process. Less model-intensive support is better pro- 
vided by a different architecture in which the direct 
linkage between model management and data man- 
agement is removed. This architecture, which we call 
“Exploratory,” requires the user to direct all data move- 
ments between models and the database. 

IMPLICATIONS OF THE SYSTEMIC VIEW 
The fact that a number of interesting issues are indeed 
raised demonstrates the usefulness of the systemic 
view. Perhaps the clearest implication of the systemic 
view for DSS design is the necessity of taking an 
“outside-in” approach. The selection of components and 
their arrangement (the “inside”) must follow from an 
understanding of the environment and role (the “out- 
side”). Unfortunately, recent books on DSS design have 
provided only limited guidance for relating environ- 
mental conditions to the specific system components or 
to their arrangement. The focus of early DSS literature 
[14] on the system’s environment and role was critical. 
These elements are central to explaining why DSS are 
different from traditional information systems and why 
they will probably be built differently. More recent DSS 
literature has focused on resources, components, and 
architecture (arrangement) [6, 271. It is only when all of 
these elements are considered in the context of envi- 
ronment and role that true understanding and insight 
can be developed. A change from “coming up with de- 
signs” to explicit derivation and justification of compo- 
nents and architectures is needed in DSS research strat- 
egy. Such a change does not imply that the study of 
single system elements should be avoided, but it does 
suggest that in any study we must first understand the 
context. 

Future DSS research should move in the direction of 
gaining a better understanding of the range of DSS en- 
vironments and roles. Although the practical use of 
DSS has permeated a substantial array of decision envi- 
ronments-from labor negotiations to military combat 
situations-the major share of DSS research to date has 
focused on a limited set of environmental conditions, 
typically, the intelligence and choice phases of organi- 
zationally isolated, financial decisions. The discussion 

in the preceding section of this article is a first step 
toward an explicit DSS design theory in which design is 
contingent on comprehensive notions of environment 
and role. Further work is needed, however, to develop 
a design-relevant taxonomy of DSS environments, iden- 
tifying key environmental characteristics and the con- 
straints they place on the choice of DSS components, 
their arrangement, and the resources they require. 

One environmental characteristic that is likely to be 
increasingly important for future DSS is the other sys- 
tems with which the DSS must interact. There has been 
only a preliminary attempt to examine DSS that inter- 
face directly with other computer-based systems [27]. 
The trend toward interconnected systems, however, is 
quite clear [28], and many DSS in the future will be 
required to interact with other DSS, traditional infor- 
mation systems, etc. Research is still needed to under- 
stand both the range of potential interaction patterns 
and the requirements and constraints they will place 
on DSS design and development. 

The systemic view sharpens the distinction between 
system components and resources. It suggests a meth- 
odology for evaluating resources and a basis for making 
educated decisions about the consumption of these re- 
sources. Given the popular marketing strategy of label- 
ing every product a DSS, it is important that a more 
critical approach be adopted by potential users. Such an 
approach is not meant to discredit one product or an- 
other, but rather to identify the capabilities of each and 
to serve as a guideline in selecting resources and 
matching them with the required functionality of the 
DSS. The four levels of software resources discussed 
earlier in this article represent differing degrees of com- 
prehensiveness and integration. Choice among them 
would depend, at least in part, on the availability of 
complementary design and development skills. 

Recognition of the fact that resources constitute only 
one aspect of the system suggests that a modification in 
the focus of DSS curriculum is needed. Too many DSS 
courses are built around a specific tool or tools. This 
kind of focus does not give students an understanding 
of DSS or provide them with a basis for being educated 
consumers of DSS tools. As an alternative we have used 
the systemic view as an organizing framework for a 
DSS course. In it the analysis of the decision situation 
serves as the basis for the development of an “ideal- 
ized” system design, against which available resources 
can be assessed and critically examined. Resources 
(available packages or generators) enter the curriculum 
only at its final stages, and the focus at that point is to 
evaluate the trade-offs between functionality and ease 
of construction-the core of any decision concerning 
the employment of resources. 

Most DSS literature so far has emphasized the dif- 
ferences between DSS and other, more traditional 
computer-based systems. The systemic view helps us 
see the similarities. Once we have adopted this per- 
spective, it becomes apparent that DSS differ from tra- 
ditional systems in degree and not in fundamental 
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structure. For instance, large-scale DSS and “institu- 
tional DSS” are very similar to classical MIS both in 
terms of environment (e.g., anonymous user) and the 
constraints this places on design (e.g., run-time effi- 
ciency). This suggests that there is much that DSS re- 
searchers and developers can learn from prior experi- 
ence with other types of computer-based systems, and 
that a cumulative experience across types of informa- 
tion systems is both possible and desirable. 

Recognizing that DSS differ from other systems only 
in degree also implies that evolving types of computer- 
based systems might be similar to DSS and should not 
be treated as totally novel. A case in point is expert 
systems (ES). We have observed that some ES devel- 
opers are treating these systems as a com.pletely new 
phenomenon and are struggling afresh through the 
classical problems of MIS/DSS development [25]. The 
systemic view makes it clear that ES bear many simi- 
larities to DSS. Their environments and roles are quite 
similar, and it is mainly a change in the iarrangement 
and resources that differentiates them. It is therefore 
inappropriate to discard the very relevant experience 
with DSS. 

CONCLUSION 
One may argue that the systemic view has been 
embedded in DSS all along. Although this may be true, 
this view has receded too far from the surface. Adopt- 
ing the systemic approach means giving emphasis to 
the relationships among the system aspects, a subject 
that has received only limited attention from both the 
practical and the theoretical point of view, even though 
it is the essence of design activity. 

There has been a migration of DSS definitions 
from an environment/role focus to a component/ 
arrangement focus. The systemic view responds to that 
“tension” and brings the two under a single comprehen- 
sive framework. 
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